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Abstract
We study the transition probability and coherence of a two-site system, interacting with an
oscillator. Both properties depend on the initial preparation. The oscillator is prepared in a
thermal state and, even though it cannot be considered as an extended bath, it produces
decoherence because of the large number of states involved in the dynamics. In the case in
which the oscillator is initially displaced, a coherent dynamics of charge entangled with
oscillator modes takes place. Coherency is, however, degraded as far as the oscillator mass
increases, producing an increasingly large recoherence time. Calculations are carried on by
exact diagonalization and compared with two semiclassical approximations. The role of the
quantum effects are highlighted in the long time dynamics, where semiclassical approaches give
rise to a dissipative behaviour. Moreover, we find that the oscillator dynamics has to be taken
into account, even in a semiclassical approximation, in order to reproduce a thermally activated
enhancement of the transition probability.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The quantum dynamics of a charge moving between two
potential minima is strongly influenced by the variations of
the surrounding geometrical configuration. The potential the
charge is put in is usually produced by heavy degrees of
freedom (a lattice, a molecular structure or an environment)
evolving as well. In many cases, only one normal mode of
the heavy system is expected to be coupled with the tunnelling
charge. This occurs for very simple molecular or mesoscopic
structures, or when the timescales of heavy and light systems’
dynamics are so different to allow coupling with a single
collective mode.

As an example, we can consider the transport of a charge
between localized sites, in a crystal, affected by coupling
with optical phonon modes; hereafter we shall refer to this
picture for the choice of notation. Moreover, there are a lot
of other cases formally similar to it. Another example is
the electron transfer reaction, in which an electron is excited
toward an excited molecular state which is strongly coupled to

ionic motion. In this case, coupling can reduce the tunnelling
frequency of the electron between the two molecular states.
The result is a freezing of the electron into a definite excited
state, in which electronic and associated ionic states are
entangled [1]. As a third example, we may consider a single-
molecular conductor made by carbon nanotubes [2]. Here, the
negative differential conductance behaviour is associated with
phonon-mediated electron tunnelling processes [3].

In all these cases, the behaviour of the systems
qualitatively changes as the temperature of the oscillator
increases, giving rise to a charge transfer process which
continuously changes from coherent quantum tunnelling
to incoherent classical hopping. Coherence properties of
tunnelling systems are now accessible to a wide class
of experiments. By broadband absorption spectroscopy,
which is able to access time-resolved kinetics, it is
possible to detect coherent oscillations in excited-state
electron transfer of fluorinated benzenes [4]. In a
single quantum dot, Rabi oscillations have been detected
using quantum wavefunction interferometry [5]. Here, the
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electromagnetic field strongly couples with excitonic levels of
the dot.

Because of the large differences among all these physical
cases, the corresponding tunnelling system lives in very
different regions of parameter space. For example, in
molecular systems, the oscillator frequency can be much
larger than the tunnelling amplitude of the system, leading
to an antiadiabatic regime. While, in solid state physics
dispersionless oscillators can model optical phonons of
systems whose frequencies are often much lower than the
hopping amplitudes of the itinerant electrons, leading to an
adiabatic regime.

To perform an extensive study of coherence and
tunnelling, as system parameters span all the accessible
phase diagrams, we choose a simple model of a single
tunnelling system, coupled to a single oscillator. Such a
model has been widely analysed, in different regimes and
approximations, because of its importance both as a building
block of cluster expansion in a lattice model [6], and as a
model for chemical reactions and charge transfer in organics.
Following a block diagonalization technique, introduced by
Fulton and Gouterman [7], we calculate quantum propagators.
These results has been used for calculating exactly the finite
temperature spectral functions [8] and to characterize the
bandwidth behaviour with temperature. Here, we study the
quantum dynamics of the system, considering the transition
probability and coherence. For this purpose, we study the
reduced density matrix, taking into account two different initial
system preparations: (i) the electron preparation, in which an
oscillator is taken from a thermal equilibrium distribution in the
absence of interaction, and (ii) polaron preparation, in which
the oscillator’s initial state is taken from a thermal equilibrium
distribution in the absence of tunnelling. Notice that the two
considered preparations are also representative of systems in
which the charge is promoted to a given energy level with
(polaron) or without (electron) vibronic relaxation. Reduction
is obtained by tracing out the bosonic degrees of freedom. The
particle transitions are characterized by the diagonal elements,
while the degree of coherence is given by the so-called purity
which gives a quantitative indication of how the system’s state
is a pure quantum state. The temporal behaviour of these
quantities depends on the coupling strength, as well as the
adiabaticity parameter, i.e. the ratio between tunnelling and
oscillator characteristic times.

In the antiadiabatic regime, when the oscillator is faster
than the tunnelling system, polaron preparation guarantees a
coherent behaviour up to temperatures of the order of the
phonon frequency. On the other hand, the electron preparation
gives rise to a fast decoherence because of the entanglement
with the oscillator mode, which produces a dissipative effect
even at zero temperature. As temperature increases, both
preparations give the same incoherent dynamics.

In the adiabatic regime, the phonon spectrum tends to a
continuum and polaron recoherence times becomes longer and
longer. We observe a decoherence in both electron and polaron
preparation. In this regime, we compare the exact result with
a static (SA) and a quantum–classical (QC) approximation
introduced in [9]. We find that the QC approximation is able to

capture the high temperature polaron incoherent motion, while
SA is sufficiently accurate only for short times.

As a drawback of the finiteness of the system, the
equilibrium is never really reached and in principle infinite
recoherences appear. This purely quantum behaviour is not
recovered either by SA or by QC semiclassical approximations.
To observe a real dissipation it is necessary to introduce a
reservoir with a continuum spectral density. Nevertheless,
we expect that in an intermediate timescale, between the
initial dynamics, driven by the fast degree of freedom, and
the recoherence times, our single-oscillator model reproduces
the many-oscillator case, provided that a mode with dominant
interaction can be separated from the rest of the bath.

The model is described in section 2. In section 3 we
introduce the reduced density matrix for the polaron and
the electron. In section 4 we describe the exact mapping,
by means of Fulton–Gouterman transformations, from the
original electron–phonon problem into two single anharmonic
oscillators. Then the QC and SA approximations are described.
In section 5 we present the results and discuss the comparison
between these three different techniques. Section 6 is devoted
to the conclusion.

2. The model

The model we shall consider is described by the following
Hamiltonian

H = ω0a†a − Jσx − g̃σz(a
† + a), (1)

describing a spin-1/2 interacting with an harmonic oscillator of
frequency ω0. The model can be associated to a large number
of physical systems [10, 11] but, for the sake of clarity, we shall
refer to an electron, in the tight binding approximation, moving
in a two-site lattice and interacting with it by local distortion
of the lattice site [8]. In particular, it can be shown that it
is equivalent to the Holstein two-site model [12, 13, 8], with
operators a and a† referring to the relative phonon coordinate
and providing that fermionic operators are mapped into a
pseudo-spin notation σz = c†

1c1 − c†
2c2 and σx = c†

1c2 + c†
2c1.

The centre of mass coordinate can easily be decoupled (for a
more detailed discussion see [8, 14]). Therefore throughout
this paper we shall use the word electron to refer the tunnelling
system and the word phonon to the oscillator.

The strength of the electron–phonon interaction is given
by the constant g̃ = g/

√
2, J is the electron wavefunction

overlap or hopping and 2J is the tight binding half-bandwidth.
Beside the temperature, we can choose two parameters

that characterize the model (i) the bare e–ph coupling constant
λ = g2/(ω0 J ) given by the ratio of the polaron energy
(Ep = −g2/ω0) to the hopping J and (ii) the adiabatic ratio
γ = ω0/J .

In terms of these parameters we can define weak coupling
λ < 1 and strong coupling λ > 1 regimes, as well as an
adiabatic γ < 1 or antiadiabatic γ > 1 regimes.

Notice that instead of choosing λ as coupling constant we
may choose another combination which is more appropriate in
the so-called atomic (J = 0) limit, i.e. α = √

λ/(2γ ) (see the
appendix).

2



J. Phys.: Condens. Matter 20 (2008) 235203 S Paganelli and S Ciuchi

3. Reduced density matrix

The study of the charge dynamics is not trivial because, in
general, it is entangled with the harmonic oscillator. The time
dependent correlation functions of the two-site Holstein model
have been investigated in the past [15] and also a short time
transfer dynamics has been introduced in [16].

In this paper, we introduce a density matrix approach for
the charge dynamics over a very large time range. Hereafter,
we shall assume that charge and oscillator are initially
separated, the former being localized on the first site and the
latter in a mixed thermal state. The corresponding density
matrix is

ρ(0) =
∑

n

e−βω0n

Z
|φn〉〈φn | ⊗ |1〉〈1|, (2)

where we used the notation |1〉 = c†
1|0〉 and β is the inverse

temperature. The state |φn〉 depends on the choice of the initial
preparation [17], in this paper we study two different situations
obtained from two different limiting regimes:

(i) electronic preparation (el): the electron is initially free
(g = 0) and the oscillator is at its thermal equilibrium

ρ(el)(0) =
∑

n

e−βω0n

Z
|n〉〈n| ⊗ |1〉〈1|, (3)

(ii) polaronic preparation (pol): the electron is initially
localized (J = 0) on a given site (say 1), while the
oscillator is displaced accordingly (see the appendix)

ρ(pol)(0) =
∑

n

e−βω0n

Z
|ψ1

n 〉〈ψ1
n | ⊗ |1〉〈1|. (4)

The dynamics is obtained by switching on g, in the first case,
and J , in the second case, and letting the density matrix
evolve with the Hamiltonian (1) ρ(t) = e−iH tρ(0) eiH t .
The temperature enters only in the initial state through the
incoherent distribution of the initial oscillator states in both
preparations.

Tracing over the oscillator degree of freedom, we obtain
the electron reduced density matrix

ρ(el)(t) = Trph{ρ(t)}, (5)

which, in terms of the oscillator’s number states, is

ρ(el)(t) =
∑

n,m

e−βω0n

Z
〈m| e−iH t |n, 1〉〈n, 1| eiH t |m〉. (6)

To characterize the motion of the polaron we cannot
reduce the density matrix by tracing out the phonon degrees
of freedom, this is because the polaron itself contains phonons.
In order to understand better the polaron dynamics, let us first
apply a Lang–Firsov transformation D (see the appendix), the
new fermionic particle corresponds to a polaron, so the density
matrix with the initial localized polaron can be written as

ρ(pol)(t) = Trph{D†ρ(t)D}, (7)

and reads, in terms of the oscillator’s number states, as

ρ(pol)(t) =
∑

n,m

e−βω0n

Z
〈m| e−iH̄ t |n, 1〉〈n, 1| eiH̄ t |m〉. (8)

3.1. Quantities of interest

In this paper, we will study two measures: one for transition
probability and the other for the degree of coherence. The
diagonal elements of the reduced density matrix, in the site
basis, represent the population of each site. The transition
probability from site 1 to site 2 is given by

w1,2(t) = 〈2|ρ(t)|2〉 (9)

where ρ is the reduced density matrix in any of the previously
introduced preparations.

The off-diagonal elements of the reduced density
matrix represent the quantum interference between localized
amplitudes. However, their knowledge is not sufficient to
determine whether the state is pure or not. Suppose that
the initial state is pure, if diagonal elements do not evolve
in time, the suppression of the off-diagonal elements implies
the evolution into a mixed state. In this particular case, the
knowledge of off-diagonal elements also determines the purity
of the system. In the more general case in which all the
elements of ρ evolve, the choice of the off-diagonal elements
obviously depends on the basis. A basis independent measure
for purity (called purity itself) is

P(t) = Tr ρ2(t). (10)

where again ρ is the reduced density matrix. It is easy to see
that 1/2 � P � 1 with P = 1 if and only if the state is pure
and P = 1/2 when the state is maximally mixed.

The behaviour of our finite system results as a
superposition of oscillations with many different characteristic
frequencies. To disentangle the relevant timescales at a given
time t it is found useful to consider the time-averaged transition
probability and coherence, defined as

Q̄(t) = 1

t

∫ t

0
dt ′ Q(t ′), (11)

where Q can be either w1,2 or P .

4. Methods

In this section we present the methods which we use to get the
reduced density matrices for both initial preparations.

4.1. Exact diagonalization

As shown by Fulton and Gouterman [7], a two-level system
coupled to an oscillator in such a manner that the total
Hamiltonian displays a reflection symmetry, may be subjected
to a unitary transformation which diagonalizes the system with
respect to the two-level subsystem [7, 18–20]. This method can
be generalized to the N-site situation, if the symmetry of the
system is governed by an Abelian group [19].

In particular, an analytic method for calculating the Green
functions of the two-site Holstein model is given in [8, 21].
Here, the Hamiltonian is diagonalized in the fermion subspace
by applying a Fulton–Gouterman (FG) transformation. So
the initial problem is mapped into an effective anharmonic

3
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oscillator model. It is possible to introduce different FG
transformations for the electron and the polaron. The
new problem can be easily simplified and is very suitable
for numerical implementation. Analytical continued-fraction
results exist for the electron case [8, 21].

In this section, we briefly recall the FG transformations
method. The density matrix elements are given explicitly in
terms of effective Hamiltonians and calculated by means of
exact diagonalization

The FG transformation we use for the electronic case is

V = 1√
2

(
1 (−1)a

†a

−1 (−1)a
†a

)
, (12)

the new Hamiltonian H̃ = V H V −1 becomes diagonal in the
electron subspace

H̃ =
(

H+ 0
0 H−

)
, (13)

the diagonal elements, corresponding to the bonding and
antibonding sectors of the electron subspace, being two purely
phononic Hamiltonians

H± = ω0a†a ∓ J (−1)a
†a − g̃(a† + a). (14)

The operator (−1)a
†a is the reflection operator in the vibra-

tional subspace and it satisfies the condition (−1)a
†aa(−1)a

†a =
−a. A wide study of the eigenvalue problem was carried out
in [22], both numerically and analytically, by a variational
method, extending the former results given in [14]. In [22] H±
is approximately diagonalized by applying a displacement, the
dynamics is reconstructed by the calculated eigenvectors and
energies.

The evaluation of the polaron Green function can be done
on the same footing, but the expression involves also the
non-diagonal elements of the resolvent operators, causing an
exponential increasing of the numerical calculations.

To avoid this problem, we first perform the LF transfor-
mation and then apply, on the resulting Hamiltonian (A.4), a
different FG transformation

V1 = 1√
2

(
1 −(−1)a

†a

(−1)a
†a 1

)
. (15)

The new Hamiltonian H̃LF = V1 H̄ V −1
1 is

H̄LF =
(

H̄+ 0
0 H̄−

)
, (16)

where

H̄± = ω0a†a + J (−1)a
†a e∓2α(a†−a) + Ep/2, (17)

is real and symmetric but not tridiagonal in the basis of the
harmonic oscillator, the matrix elements of H̄± are given in [8].

In order to write down the density matrix elements, let us
introduce the following notation:

R(±)m,n(t) = 〈m| e−iH±t |n〉 (18)

R̄(±)m,n(t) = 〈m| e−iH̄±t |n〉, (19)

Nm,n
1,1 (t) = 〈m, 1| e−iH t |n, 1〉 = 1

2

[
R(+)m,n(t)+ R(−)m,n(t)

]
(20)

Nm,n
2,1 (t) = 〈m, 2| e−iH t |n, 1〉 = (−1)m

2

[
R(+)m,n(t)− R(−)m,n(t)

]
,

(21)

Mm,n
1,1 (t) = 〈ψ1

m , 1| e−iH t |ψ1
n , 1〉

= 1
2

[
R̄(+)m,n(t)+ (−1)m+n R̄(−)m,n(t)

]
(22)

Mm,n
2,1 (t) = 〈ψ2

m , 2| e−iH t |ψ1
n , 1〉

= 1
2

[
(−1)n R̄(−)m,n(t)− (−1)m R̄(+)m,n(t)

]
. (23)

The reduced electron density matrix elements are

ρ
(el)
1,1 (t) =

∑

n,m

e−βω0n

Z
|Nm,n

1,1 (t)|2

ρ
(el)
2,1 (t) =

∑

n,m

e−βω0n

Z
Nm,n

2,1 (t)N
∗m,n
1,1 (t),

(24)

the calculation for the polaron case gives

ρ
(pol)
1,1 (t) =

∑

n,m

e−βω0n

Z
|Mm,n

1,1 (t)|2

ρ
(pol)
2,1 (t) =

∑

n,m

e−βω0n

Z
Mm,n

2,1 (t)M
∗m,n
1,1 (t).

(25)

A qualitative insight into the relevant timescales involved
in the evolutions of ρ(el) and ρ(pol) can be gained by looking at
the behaviour of the spectral functions of the model (1) studied
in our previous work [8]. In terms of the Fourier transform of
function Nm,n

1,1 (t), the electron spectral function A(ω) can be
defined as

A(ω) = − 1

π
Im
∑

n

e−βω0n

Z
Nn,n

1,1 (ω). (26)

An analogous equation holds for the polaron spectral function
relating it to the function M1,1(ω).

An example of A(ω) is reported in figure 1. We notice that
three energy scales (depicted schematically in figure 1) can be
associated A(ω) [8]. One is the separation of the low lying
energy level�E , the other is the phonon energy ω0 and finally
there is the tunnelling J . They are depicted schematically in
figure 1. These energy scales define three different timescales:

(i) τJ = 2π J −1,
(ii) τω0 = 2πω−1

0
(iii) τQ = 2π�E−1.

As is reasonable from the relation between spectral
functions and the reduced density matrix (26), these
characteristic timescales are recovered in the reduced density
matrix evolution.

4.2. The static approximation

The case in which a light quantum particle interacts with
much more massive particles, is very common in solid state
and molecular physics. We discuss the adiabatic regime,
meaning that, in a characteristic time for the light particle

4
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Figure 1. Electron spectral function for γ = 0.1, λ = 2 and T = 0
see [8].

dynamics, the heavy degrees of freedom can be considered
approximately quiet. Here, we describe the SA approach in
its basic formulation for the dynamics.

The Hamiltonian (1) can be written in the coordinate–
momentum representation

H = p2

2m
+ mω2

0

2
x2 − ḡ√

2
xσz − Jσx − ω0, (27)

with ḡ = g
√

2mω0. In the adiabatic limit (γ 	 1),
the phonon is much slower than the electron (heavy phonon
and large electron tunnelling amplitude) and one can neglect
the phonon kinetic term in (27). This is the well known
Born–Oppenheimer approximation. In practice, it consists in
studying the electronic problem with x as a classical parameter.

Within this approximation, we put ω0 = √
k/m → 0

(m is the ion mass) and the Hamiltonian becomes

Had = k

2
x2 − ḡ√

2
xσz − Jσx . (28)

The eigenvalues can be expressed through the classical
displacement x

V±(x) = k

2
x2 ±�(x), (29)

with �(x) =
√

ḡ2

2 x2 + J 2. The lowest branch (−) of (29)
defines an adiabatic potential which has a minimum at x = 0
as far as λ < 1 while for λ > 1, it becomes a double well

potential with minima at ±xm , xm =
√

ḡ2

2k2 − 2J 2

ḡ2 , in this case
the electron is mostly localized on a given site. The quantum
fluctuations are able to restore the symmetry in analogy to what
happens for an infinite lattice [23]. It is worth noticing that, in
this limit, Hamiltonian (1) is equivalent to the adiabatic version
of the spin-boson Hamiltonian [24, 25].

The temporal evolution is given by

e−iHadt = e−i kx2

2 t

[
cos�(x)t + i

(
ḡx√

2�(x)
σz + J

�(x)
σx

)

× sin�(x)t

]
, (30)

so the density matrix dynamics can be explicitly calculated.

The electronic initial preparation corresponds to the
density matrix

ρ(0) = |1〉〈1|
√

kβ

2π

∫
dx e− βk

2 x2 |x〉〈x |. (31)

Tracing out the phonon we obtain the electron reduced density
matrix with elements

ρ
(el)
2,2 =

√
β Jλ

2π

∫
du e− β Jλ

2 u2 sin2(J t
√

u2λ2 + 1)

1 + λ2u2

ρ
(el)
1,2 = −i

√
β Jλ

2π

∫
du e− β Jλ

2 u2 sin(2J t
√

u2λ2 + 1)

2
√
λ2u2 + 1

(32)

where the scaled length u = xk
√

2/ḡ was introduced.
In the same way, we can introduce the polaronic

preparation

ρ(0) = |1〉〈1| e− β ḡ2

4k

√
kβ

2π

∫
dx e−β( k

2 x2− ḡ√
2

x)|x〉〈x |. (33)

It is worth noting that, in the adiabatic limit, we cannot define
the polaronic dynamics, as introduced in (7), because the
operator D is not defined for ω0 = 0. In this limit, we study
electronic dynamics with an initial polaronic preparation. The
corresponding reduced density matrix is

ρ
(pol)
2,2 =

√
β Jλ

2π

∫ ∞

−∞
du e− β Jλ

2 (u−1)2 sin2(J t
√
(uλ)2 + 1)

(uλ)2 + 1

ρ
(pol)
1,2 =

√
β Jλ

2π

∫ ∞

−∞
du e− β Jλ

2 (u−1)2

[
uλ sin2(J t

√
(λu)2 + 1)

((λu)2 + 1)

− i
sin(2J t

√
(λu)2 + 1)

2
√
(λu)2 + 1

]
. (34)

It is possible to show that ρ(pol)
2,2 is actually the adiabatic

limit of the diagonal element of the reduced polaronic density
matrix, while this is not true for the off-diagonal elements.

We want to stress that, in the SA approach, the phonon is
completely static because its momentum p has been neglected.
Here, only the initial phonon distribution plays a role, but
during electron hopping, the oscillator is taken to be fixed.

4.3. A quantum–classical dynamics approximation

To account for dynamics of the slow variable, a mixed
quantum–classical dynamics can be introduced. In the past,
several schemes for quantum–classical dynamics have been
proposed, for example starting from the Born–Oppenheimer
(SA) adiabatic approximation for the ground state at each
step and using a density functional Hamiltonian [26, 27].
Another approach, good for a short time dynamics, consists
in a mapping from the Heisenberg equations to a classical
evolution by an average over the initial condition [28, 29].
Some schemes are based on the evolution of the density matrix
coupled to a classical bath [30, 31]. A systematic expansion
over the mass ratio has also been done, starting from a partial
Wigner transform of the Liouville operator, in [32–34]. The
QC approximation we use is essentially that of [30, 31].

5
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Figure 2. Polaron (top) and electron (bottom) populations and purity. Left panels: antiadiabatic and strong coupling regime: γ = 10, λ = 40.
Right panels: antiadiabatic and weak coupling regime γ = 10, λ = 10. Curves are for T/ω0 = 0.0 (black), T/ω0 = 0.5 (dark grey blue),
T/ω0 = 2.0 (light grey green), T/ω0 = 10.0 (medium grey red). Vertical lines mark, from left to right, the timescales τω0 , τJ , τQ .

Let us consider Hamiltonian (27), where x and p are
assumed to be classical variables which can be represented as
the components of a vector u. Then a QC state vector can be
introduced as

v = u ⊗ σ =

⎛
⎜⎜⎜⎝

x
p
σx

σy

σz

⎞
⎟⎟⎟⎠ . (35)

The classical variables evolve with the Ehrenfest equations

ẋ = p

m

ṗ = mω2
0

2
x − ḡ√

2
〈σz〉 ,

(36)

while the quantum variables evolve in the Heisenberg picture

σ̇x = −√
2ḡxσy

σ̇y = √
2ḡxσx − 2Jσz

σ̇z = 2Jσy .

(37)

To give a unified description of the overall evolution, we define
a Liouvillian operator L = Lx + Lp + Lσ with

Lσ = −i

( 0 −√
2ḡx 0√

2ḡx 0 −2J
0 2J 0

)
(38)

and Lx = ẋ ∂
∂x Lp = ṗ ∂

∂p . So, the time evolution is given by

v(t) = eiLt v(0). (39)

The numerical integration can be implemented using the
symmetries Trotter breakup formula [35, 36]

v(t) � (
eiLσ ε2 eiLp

ε
2 eiLx ε eiLp

ε
2 eiLσ ε2

)N
v(0) (40)

with ε = t/N . All the density matrix elements can be
expressed in terms of elements of v(t).

5. Results

5.1. Antiadiabatic regime

Figure 2 shows the time behaviour of the purity P
(equation (10)) as well as the transition probability (9) obtained
in the antiadiabatic regime when the phonon frequency (ω0)
is much larger than electron hopping J for both (el) (3) and
(pol) (4) initial preparations. Timescales defined in section 4.1
are shown as vertical lines, the timescale is logarithmic to
better show the very different time domains. We consider two
parameter sets at several temperatures. One characteristic of
strong coupling (left panels) and the other of weak coupling
(right panel). The same sets of parameters and temperatures
are used in figure 3 where we show the time-averaged P and
w. Let us first discuss the strong coupling regime.

It is known that, in the antiadiabatic regime, the polaron
is a well defined quasi-particle at strong coupling [37], in
the sense that, in the polaronic spectral function, almost all
the spectral weight is contained in the polaronic peak. This
has also been shown for a two-site model [8, 14, 15, 38–40].
In contrast, in the electron spectral function, the total
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Figure 3. Polaron (top) and electron (bottom) time-averaged populations and purity. Parameters and labels are the same as in figure 2.

spectral weight is distributed between a large number of
frequencies [8].

From the point of view of transition probability and purity,
the strong dependence on initial preparation can be seen by
comparing the low temperature evolution for both the actual
(figure 2 left panel) and the time-averaged (figure 3 left panel)
quantities.

Let us consider the electron preparation (figures 2, 3,
bottom left panels). Here the coupling with the oscillator
mode is strong and the system starting from a disentangled
state (equation (3)) evolves in a state in which the electron
is entangled with the oscillator. This is shown in the purity
evolution where we see that electrons lose coherence very
rapidly, on a timescale τJ , and become a mixed ensemble, even
at zero temperature1.

On the same timescale, the transition probability
approaches 1/2 on average (figure 3 bottom left panel). The
initial decoherence is almost independent of the temperature,
as can be seen from averaged quantities, while long time
recoherence peaks are suppressed as T increases. Such a
suppression results from destructive interference between the
time evolution of the different terms appearing in (6) when
excited oscillator states are initially populated. Referring to
the spectral analysis [8] and to figure 1, this phenomenon must
be ascribed to the superposition of a large number of high
frequency excitations.

Even if the transfer does not have a regular shape, one
can see some high frequency oscillations of period τω0 . These

1 Notice that, in this case, the analysis of purity and transition probability
alone in principle do not allow us to determine which states the mixture is
composed of (pointer states). In particular whether the states are localized
or not. However, a straightforward analysis of non-diagonal elements of the
reduced density matrix shows that the states are indeed localized.

frequencies correspond to the energy separation between two
adjacent electronic bands [8].

In contrast, the polaron preparation (see figure 2, top left
panel) evolves in a state which is completely coherent at zero
temperature. The frequency associated with polaron transfer
is equal to the renormalized tunnelling J ∗, as predicted by
the HLFA (see (A.6)). So, the state is pure and delocalized.
The polaron state remains coherent even for temperatures
comparable with ω0, but higher frequency modulation appears,
making the state oscillate from a pure to a mixed one.
Nevertheless, it is possible to see an overall modulation of
the transition probability with the same period τQ even at the
largest temperature. This is in contrast with the HLFA at
T = 0 (A.5) which predicts that the polaron band decreases
with temperature and consequently τQ increases. However, the
purity decreases as temperature increases, as shown in figure 2.
This is an effect of the broadening of the polaron band that is
observed as temperature increases [8]. Indeed, a distribution
of spectral weight among several poles around the polaron
band occurs as an effect of increasing vibronic excitations ([8],
figure 3 upper panel). This leads to a decoherence effect due to
destructive interference between these oscillating contributions
to purity (see equations (18), (25)). For high temperature (T �
ω0), the state becomes completely mixed and the evolution of
the polaron is analogous to that of the electron. This is evident
from the highest temperature curves shown in figure 3, left
panels upper and bottom left. We conclude that the main source
of decoherence is temperature for polaron, while the electron
decoheres even at zero temperature due to the coupling with
the vibronic mode.

This is also found in the weak coupling regime (electron
preparation figures 2, 3, bottom right panels). Here electron
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Figure 4. Polaron (top) and electron (bottom) populations and purity. Left panels: adiabatic and strong coupling regime: γ = 0.1, λ = 2.
Right panels: adiabatic and weak coupling regime γ = 0.1, λ = 0.5. Curves are for T/ω0 = 0.0 (black), T/ω0 = 0.5 (blue), T/ω0 = 2.0
(green), T/ω0 = 10.0 (red). Vertical lines mark, from left to right, the timescales τJ , τω0 , τQ .

coherence approaches a value which is larger on average
than that at strong coupling (figure 3) and decreases as
temperature increases. We see (figures 2, 3, right panels) that
the polaron purity differs qualitatively from the electron only
near zero temperature, while averaged polaron and electron
transition probabilities are essentially the same for all shown
temperatures. Indeed, a sufficiently weak interaction is not
able, at zero temperature, to excite many vibrational states,
so the electron decoherence is essentially given by the small
perturbation of the lowest oscillator’s states. On the other
hand, the polaron is not formed (we are below the polaron
crossover) and the charge does not acquire much coherence
by moving with the oscillation cloud. Spectral analysis shows
([8], figure 3 lower panel) that in weak coupling HLFA is
qualitatively recovered, we have a polaron band narrowing as
temperature is increased in contrast with the strong coupling
behaviour.

It is worth stressing that in both weak and strong
coupling regimes at high temperature, the increasing numbers
of oscillator states involved in the initial state produce
decoherence on the timescale τJ . Decoherence can be partial
but nonetheless no environment is needed to explain the
decoherence process. The only sources of decoherence are the
states populated by the initial thermal distribution.

5.2. Adiabatic regime

Results form the exact diagonalization method are reported in
figure 4, the averaged quantities are shown in figure 5 in the
same way as we did in the antiadiabatic case. Notice that now
the shortest timescale is τJ .

Let us first discuss the strong coupling case. We see that,
in contrast with the antiadiabatic regime, there is a marked
dependency on temperature of both electron and polaron
properties. More specifically, polaron preparation no longer
evolves coherently at low temperature.

In the first timescale, τJ , the particle is localized (its
transition probability is extremely low) but the state keeps on
being quite pure. The polaron is trapped inside the initial site
and both transition probability and coherence evolve initially
with characteristic time τJ independently of temperature. At
intermediate timescale τω0 temperature induces delocalization
while the coherence decreases. In this time regime, the polaron
transition probability is related to the quasi-classical motion of
the oscillator and depends strongly on temperature.

This can be seen in figure 6, where we plot the temperature
dependence of the level reached by the averaged transition
probability on the timescale τω0 (inset). Since there is no clear
plateau in the averaged transition probability for times greater
than τω0 , the choice of the transition probability level is rather
arbitrary. We choose the value of w̄12 at τω0 . We see that
this transition probability level passes from a low temperature
behaviour, which is temperature independent, to a temperature
dependent behaviour through a wide crossover.

At very low temperature, after the characteristic time τω0 ,
coherence and transition probability reach a quasi-stationary
value that is essentially dominated by fast tunnelling of
the charge between the two sites, with a given phonon
displacement. Once the temperature increases, classical
activation processes of the phonon coordinate become
effective, producing an increase in transition probability as
well as a decrease of the purity. As we shall see in the next
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Figure 5. Polaron (top) and electron (bottom) time-averaged populations and purity. Parameters and labels are the same as in figure 4.

Figure 6. Time-averaged transition probability for λ = 2.0, γ = 0.1,
temperatures are from bottom to upper curves T/ω0 = 0.1, 0.5, 1.0,
2.0, 10.0, 20.0. Vertical lines mark, from left to right, timescales
τJ , τω0 and τQ respectively. Inset: levels reached at time τω0 (arrows
in the main panel) as a function of the inverse temperature.

section, this thermally activated behaviour is to be ascribed to
the phonon classical hopping between two adiabatic minima
and disappears in the SA where such hopping events are absent.

As far as an electron is concerned, we can see that
the site occupancy begins to oscillate coherently with period
τJ , with a damping increasing with temperature. In the
same timescale, the time-averaged value shows a saturation at
low temperature. At a temperature independent intermediate
timescale τω0 , time-averaged coherence reaches a very slowly
decreasing level which decreases with increasing temperature.
Quantum oscillations still exist further in time, but the
remaining coherence slows down at high temperature, so

that the long timescale (τQ) seems to be not relevant in this
case. The electron’s tendency to coherently hop is suppressed
by decoherence induced by excited phonons, whose number
increases with temperature. In the adiabatic limit, this effect is
more evident than in the antiadiabatic case, this is because the
energy spacing between the oscillator’s levels becomes very
small and the spectrum tends to a continuum.

In the weak coupling case (figures 4, 5, right panels)
the transition probability is very similar for both electron
and polaron as in the antiadiabatic case. Conversely, at low
temperature, the electron is more coherent than the polaron.
In this regime, being the adiabatic potential single well, the
displaced phonon base is not the best choice. So, many
displaced oscillator states are coupled with a polaron, which
decoheres rapidly.

5.3. Comparison with quanto-classical approaches

In this section, we show a comparison between the results
obtained in the three different ways described before: exact
diagonalization (ED) by means of mapping introduced in
section 5.1, the quantum–classical (QC) dynamics approach
described in section 4.3 and the static (SA) approximation
(section 4.2). We shall limit ourselves to an adiabatic case
(γ = 0.1) with electron–phonon interaction strong enough to
allow polaron formation (λ = 2).

In figure 7, we report the exact dynamics given by the
three different techniques, while in figure 8 we show the time
average. Remember that, as far as the polaron is concerned, in
both the SA and QC approximation, the purity represents that
of the electron with an initially displaced phonon distribution.

At low temperature (left panels), and within the τJ

timescale, the classical phonon is almost frozen, and so both
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Figure 7. Polaron (top) and electron (bottom) populations and purity in the adiabatic strong coupling regime γ = 0.1, λ = 2. Left panels: low
temperature T/ω0 = 0.1. Right panels: high temperature T/ω0 = 10.0. Curves refers to ED (black), QC (blue), SA (green) approximations.
Vertical lines mark, from left to right, the timescales τJ , τω0 , τQ .

Figure 8. Polaron (top) and electron (bottom) time-averaged populations and purity. Parameters and labels are the same as in figure 7.

the SA and QC approximations are equivalent. Nevertheless,
the ED behaviour of both polaron and electron preparation is
quite different because of quantum fluctuations. In particular,
for short timescales, one can see that the ED dynamics,
at low temperature, is damped faster than in the other two

approximations. The difference becomes more evident for
higher timescales. In this regime, the temperature is not so
effective in dissipation processes, while the strong coupling
and the quantum uncertainty produce a sort of purely quantum
damping.
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Figure 9. Time average transition probability level at the timescale
τω0 in the adiabatic regime (λ = 2.0, γ = 0.1) as a function of
inverse temperature for different preparations and different
approximations.

A damping of this sort was also found in [17], where the
authors considered a spin-boson Hamiltonian for a tunnelling
system coupled to a multi-mode bath with an ohmic spectral
density. It is worth stressing that, in the present case, such a
damping is not due to the bath but is rather a consequence of the
entanglement between the tunnelling system and the quantum
oscillator. Nevertheless our results are comparable with that
of [17]. The reason is that, at strong coupling, the charge is
coupled to the bath through a single collective mode, taking
into account all the bath’s oscillators.

As expected, the exact polaron purity completely differs
from the purity obtained by SA and QC. The reason is that
at low temperature and strong coupling the polaron is well
defined and moves as a quite coherent particle, as can be
seen from the long timescale oscillations. On the contrary, if
we consider only an electron with a displaced oscillator, the
particle remains localized because of the trapping mechanism,
but it cannot coherently tunnel between the two sites.

A semiclassical behaviour is approached for T greater
than ω0, when SA and QC reproduce the ED transition
probability within the τJ timescale, as is evident in the right
panels of figures 7–8. The QC approach remains a good
description also for higher timescales. Notice that the same
occurs in the transport of extended systems where classical
incoherent transport is achieved when T is greater than
0.2ω0 [41]. It is worth noticing that for very high temperature
(T � J, T/ω0 = 10 in figures 8, 9) the polaron is not formed,
its dynamics approaches that of the electron in an initially
delocalized phonon distribution. As a result, the QC purity
approaches the ED’s.

At high temperature, the oscillator dynamics plays a
relevant role, QC is a much better approximation of ED
than SA. This fact can be understood by realizing that
the main temperature effect is the damping of the coherent
tunnelling oscillations. Once these oscillations are sufficiently
suppressed, the phonon driven dynamics prevails. In the
SA framework, the initial thermal distribution of the phonon
coordinate makes the electron thermalize irreversibly in a time
that is the shorter the greater the temperature. Before this
adiabatic thermalization, i.e. in a tunnelling period, the SA is
still a good approximation.

Afterwards, the hopping of the oscillator coordinate into
the other minimum of the adiabatic potential (equation (29))
takes place. The charge degree of freedom follows while
w1,2 saturates on average. In extended systems this regime
corresponds to the activated mobility regime [42–44]. Since
SA completely neglects the oscillator’s dynamics, it does not
predict correctly w1,2, as can be seen in figure 9. The QC
approximation, instead, gives a correct qualitative prediction.

6. Conclusions

In this paper, we have studied a simplified model to treat the
dynamics of a tunnelling charge interacting with a vibrational
degree of freedom. We introduced a reduced density matrix
approach to characterize the charge dynamics. Temperature
is introduced by taking an initial equilibrium distribution of
the oscillator. Both the transition probability and the purity
are studied in order to connect the charge transfer with its
coherence.

Due to the simplicity of our model, we were able to
span all the parameter’s space even at high temperature and
strong coupling and to study the role of the initial preparation.
Moreover, we could explore a temporal range which is very
large compared with the typical timescales that can be obtained
in models where the charge is coupled with an oscillator bath
having many degrees of freedom [17, 45, 46].

As in any finite system, in our model, transition
probability and purity can be expressed as a superposition of
many non-commensurate oscillations. We therefore expect an
oscillatory behaviour in our quantities of interests. However,
the initial thermal distribution of the oscillator states induces
decoherence on an intermediate timescale, due to the strong
interaction with the oscillator. This phenomena occurs
depending on the initial preparation of the system.

We find that in the antiadiabatic and strong coupling
regime the polaron exhibits a coherent tunnelling dynamics
over timescales of the inverse polaron renormalized band.
The coherent behaviour is lost out of the polaronic phase,
i.e. increasing the temperature or decreasing the coupling. An
electron evolves though partially incoherent dynamics. In the
adiabatic strong coupling regime, temperature enhances the
incoherent polaron charge transfer. The opposite occurs in the
electron preparation.

In the adiabatic regime, two common approximations have
been compared with exact results, the aim is to highlight the
limits of validity of these approximations and to provide a
simple testing tool, the two-site model, for generalizations
to other extended models. As expected, a dynamical
semiclassical approximation gives good estimates for both
coherence and tunnelling amplitude at high temperature T �
ω0. Quite unexpectedly, it allows for a good approximation
of the transition probability at low temperature as far as time-
averaged quantities are concerned. However, such a quasi-
classical approximation fails approaching the antiadiabatic
regime where non-adiabatic transitions are expected to
contribute significantly to charge dynamics. This simplified
model could serve to test approximate schemes to deal with
this regime [45].
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To conclude, we have shown that a non-dissipative
evolution of a tunnelling system, strongly coupled to a single
oscillator, can give rise to decoherence phenomena when
the initial distribution of the oscillator is thermal and when
the oscillator distribution is not initially equilibrated in the
presence of the charge. These decoherence phenomena are
independent of the presence of a dissipative bath. Thus, in a
non-equilibrium experiment in which a charge is introduced
in a molecular system and interacts strongly with a particular
mode of the molecular system, decoherence effects can be
triggered alone by this coupling and by the initial non-
equilibrium distribution of the molecule.
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Appendix. Atomic limit

In the atomic limit, the Hamiltonian is diagonalized by the so-
called Lang–Firsov (LF) transformation

D = eασz (a†−a). (A.1)

This transformation shifts the phonon operators by a quantity
α, while the electron operators are transformed in new
fermionic operators, with energy Ep, associated to a quasi-
particle called a polaron [47, 12]. This particle can be thought
of as a charge moving together with a dressing cloud of
oscillator quanta, α2 represents the mean number of phonons
in the polaron cloud.

The atomic Hamiltonian

H0 = ω0a†a − g̃σz(a
† + a), (A.2)

after the LF transformation H̄0 = D† H0 D becomes:

H̄0 = ω0a†a + Ep/2, (A.3)

the eigenvalues En = ω0n + Ep/2 correspond to the two-fold
degenerate eigenvectors |ψ j

n , j〉 = D|n, j〉 = c̄†
j |n〉, where the

index n = 0, . . . ,∞ refers to the photon number, j = 1, 2
to the electron site and c̄†

j is the polaron creation operator

c̄†
j = Dc†

j D† = c†
j exp{(−1) jα(a† − a)}.

In the case of finite J , the hopping term is not diagonalized
by (A.1) and the new Hamiltonian H̄ = D† H D becomes

H̄ = ω0a†a − J (σx cosh(2α(a† − a))

+ iσy sinh(2α(a† − a)))+ Ep/2. (A.4)

Depending on the choice of parameters, the problem
will be better described by an electron or polaron excitation
picture. In particular, in the weak coupling limit, both the
small polaron and the electron are good quasi-particles while,
in the intermediate and strong coupling regimes, the polaron
behaviour prevails [39].

The different regimes was widely studied in the literature,
both for the two-site problem and the extended case.
The antiadiabatic case was first studied in the small J

perturbation regime [12, 48] and in the Holstein–Lang–
Firsov approximation (HLFA) [12, 37], where an effective
Hamiltonian is introduced to eliminate the phonon states. In
the HLFA J is substituted by an effective hopping integral
obtained by averaging the displacement exp [2α(a† − a)] on
the thermal distribution of phonons. The resulting effective
hopping integral is

J ∗ = J exp(−4α2(nB(T )+ 1/2)), (A.5)

where nB is the Bose occupation number. At zero temperature,
the well known exponential reduction of the bandwidth is
obtained

J ∗ = J exp(−2α2) (A.6)

and, as the temperature is increased (T/J � γ ), the bandwidth
decreases rapidly. As we show in [8] and in the present paper,
this is a good approximation at zero temperature but it becomes
inadequate at finite T where incoherent processes turn out to be
important.
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